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ABSTRACT 

Numerical methods are present to solve space-
independent transport equations for 6 delayed 
neutron groups and the isotopic evolution of 
poisons produced in a reactor, as well as their 
implementation in the development of a real 
time nuclear reactor simulator. An asymptotic 
performance is assumed for the spatial 
component of the neutron flux. The inhour 
equation, the control and safety rod effect, the 
reactivity transients and an interface to help the 
user become familiar with the setting, were 
considered to develop the simulator. An access 
routine to the PC timer has been developed to 
make the simulator work in real time 

1.  CONTENT 

 
The transport theory and its impact on a reactor 
dynamics are usually difficult to understand. To 
make it more comprehensible, and to train the 
staff working in a nuclear center, a real time 
nuclear reactor simulator has been developed 
at the IPEN facilities, in Labview 4.0 (see figure 
1). 

 
Figure 1. 

 
 

Solving method: Hansen’s and T. England’s 
methods were adapted to develop neutron 
densities and the poison evolution. 
 

The neutron kinetic equations for n delayed 
neutron groups are: 
 

C(t)+n(t)
-(t)

=
dt

dn(t)
ii

N 





 (1) 

(t)C-n(t)=
dt

(t)dC
ii

ii 



 (2) 

 
Where: 
n(t): Is the neutron density 
Ci(t): Is the ith-group-delayed neutron precursor 
density 
(t): Reactivity 
i: the ith-group delayed neutron’s fraction 
 = i

N i  is the total fraction of the delayed 
neutrons 
A: Generation time 
 ,: decay constant of the ith-group precursors 

 
Here a summarized method is presented. 
Details could be commented in the respective 
reference[1]. Based on equations (1) and (2) a 
7-element column vector  is defined. The first 
one is related to the neutron density and the 
others to the delayed neutron concentrations. 
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and a 7x7 a (t) matrix 

A t

t

( )

( )











































 
 













1 6

1
1

6
6

0

0

 (4) 

 

So the equation system (1) and (2) becomes: 
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For the method’s derivation, matrix A is split 
into an inferior triangular matrix (L), a superior 
triangular matrix (U) and a diagonal matrix (D). 
 
Hence A(t) becomes: 

A(t)= L+ D(t)+U   (7) 

 
Therefore, to develop an iterative process, 
equation (5) is expressed as follows: 

d (t)

dt
- D(t) (t)= (L + U) (t)    


  (8) 

 
In time interval h=t1-to, for which we assume an 
invariable reactivity, we integrate (8) between 0 
and h. For this purpose the integration factor 
exp(-Dt) is introduce: 

     (t +h)= (Dh) (t )+( [D(h- )])(L+U) (t + )d    o o
h

o oexp exp
(9) 

 
Where 0= =h y d=dt 
 
To provide a reasonable approach to the 
performance of (to + ) we assume it is 
exponential. 

 
(to + ) = exp. (o )(to)   (10) 
 

Where o is A largest self-value, which is 
obtained after solving the equation. 

 
 =0  (11) 
 

Where I is the matrix unit 

Equation (11) is the well-known Inhour equation 
and would be solved in every temporal interval 
with variable reactivity. 

 
Inserting (10) in (9) and writing 
 
 (to)= j and  (to+h) = j+1, hence:  
 
    j+1 =G(tj) j (12) 

Where matrix G represents the expression 

G= (Dh)+( I -D) | ( hI)- (Dh)|(L+U)o
-1

oexp exp exp     

(13) 
 

Developing this expression we have: 
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Where: 

 


do

 


 

 
We can observe from its nature, that matrix G is 
unconditionally stable for every real value of h 
and o and gives as a result the right 
asymptotic solution (Frobenius’ theorem). 

 
The linear chain solution method will be used 
for the analysis of fission products [2]. 
 
This development by linear chains does not 
involve a generality loss and the results provide 
a notable flexibility. The ith-nuclide 
concentration in the chain is determined by 
following the sequence of the coupled 
equations: 
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(15) 
Where: 

 
Yk

i: production fraction by k fissil nucleid fission. 
Sk :  fission ratio of the kth fissil nucleid. 
i : radioactive decay constant. 
Ai : gj i 

j
 i 

 j  where j
 i is the j absorption 

cross-section (n, ) of the ith nuclide in energy 
group j; gj i  is the spectrum or shielding factor, 
and  j is the neutron flux in the jth energy 
group. 
i-1 : is i-1 or Ai-1 depending on the coupling of  
precursor i-1 (Here, Ai-1 is not necessarily the 
total absorption ratio, it is only the reaction 
portion (n, ) which originates Ni. Thus, in fissile 
nuclides, Ai-1 is the capture ratio. 
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y S y Sm m
k K

k
  is the average production 

ratio during time interval t added to all k fissile 
nuclides. 
The general solution for set (15) to the nth 
nuclide, assuming a constant flux and an 

average fission ratio during an increase of time 
t, is: 
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Where the time interval t is the value read by 
the PC timer. 
 
2.  DEVELOPMENT 

The program consists of the following routines: 
 

- Equation solving routines 
- Operating initial condition routines. (see 

fig.2) 
- Routine to obtain the poison solution 

(xenon, iodine, samarium and promethium) 
- Inhour obtained by/developed by the 

Newton-Rhapson’s method 
- Routines to access to the PC timer 
- control and safety rod monitoring routines 
- Logical comparators 
- Xenon, coolant temperature and rod 

feedback routines 
- Coolant temperature routines 
- Ramp, sinusoidal and constant reactivity 

insertion routines 
- User-aid routines 
- Routines of data storage in files 
- Display monitoring routines 

 
All these routines integrate the simulator’s main 
programs. The source code for the main 
routines is shown below.  

 
 

3.  RESULTS 

 
A comparison between the program 
performance and a RP-10 reactor in critical 
condition was made on January 22 1998, at 
10:46:36 during 9635.25 seconds, with the 
following configuration: 
 

Core : 17 
Operation mode: IV 
Power : 7 kW 
 

 

 

Figure 2. Power vs. time (simulator critical 
condition). 
 
The results are shown in two diagrams. There 
is a great qualitative similarity between both, 
though there is no quantitative similarity 
because the equations used have been 
enormously simplified and the punctual 
approximation with all its limitations has been 
used. 

 
 

4.  CONCLUSIONS 

1.- Hansen’s an T. England methodologies has 
been applied with successful result in a nuclear 
reactor simulator development. 

2.- Simulations of critical conditions can be 
doing, as well as rod  control calibrations, 
poison behavior will be studied, reactor 
configuration will be change in order to have 
specified reactor conditions and characteristics 
parameters will be  added using another 
controls, such to increasing the program 
complex. 
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Figure 3.  Critical condition (RP-10 nuclear reactor). 
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